Revista do Colégio Brasileiro de Cirurgiões
https://www.revistadocbc.org.br/article/doi/10.1590/0100-6991e-20253835
Revista do Colégio Brasileiro de Cirurgiões
Artigo Original

Efeito antimicrobiano de tela cirúrgica biológica acrescida de vancomicina ou nanopartículas de prata para bactéria multirresistente - estudo experimental em ratos

Antimicrobial effect of biological surgical mesh added with vancomycin or silver nanoparticles for multidrug-resistant bacteria: experimental study in rats

Marcelo de Paula Loureiro; Pietro Maran Novais; Ishmael Thomaz Padilha; Marina Schmid Guérios; Fábio Luigi Crisigiovanni; Victoria Bizzi Vieira; Ana Luiza Masselai; Rodrigo Müller Caravalho; Eduardo Salamacha; Luane Zontta; Marina da Costa Gomes; Enrico Bertolucci Boscardim; Isadora Utri Andreguetto; Felipe Francisco Tuon

Downloads: 0
Views: 34

Resumo

Introdução: A infecção do sítio cirúrgico (ISC) e das telas de polipropileno (TPP) é um problema recorrente em cirurgias de hérnias abdominais, evidenciando a necessidade de um novo material antimicrobiano para o reparo cirúrgico. O objetivo deste estudo foi avaliar o efeito antimicrobiano in vivo de uma nova tela biológica feita de pericárdio bovino descelularizado (PB), acrescida de vancomicina (VAN) ou nanopartículas de prata (AgNPs), como prevenção para a ISC.

Métodos: Foram utilizados 35 ratos Wistar, divididos em quatro grupos: PB C+ (n=9) com PB sem acréscimos; PP C+ (n=8) com TPP; PB AgNPs (n=9) com PB acrescido de nanopartículas de prata; e PB VAN (n=9) com PB acrescido de vancomicina. As telas, com 1 cm², foram fixadas na fáscia muscular sob o subcutâneo do dorso dos ratos, seguidas de inoculação com Staphylococcus aureus resistente à meticilina. Os animais foram observados por 7 dias, com posterior eutanásia, análise histológica e bacteriológica.

Resultados: O grupo PB VAN teve melhor controle da infecção em comparação aos grupos PP C+ e PB AgNPs (1x10¹ vs. 1,4x10³UFC/g, p=0,0303; 1x10¹ vs. 1,5x104 UFC/g, p<0,0001, respectivamente). O PB AgNPs apresentou menor redução bacteriana em comparação ao PB C+ (p=0,042). Na análise histológica, houve leve reação inflamatória no PB VAN, moderada no PB C+, e intensa no PP C+ e PB AgNPs.

Conclusão: O PB acrescido de vancomicina apresentou ação antimicrobiana promissora, enquanto o uso de nanopartículas de prata não demonstrou eficácia neste estudo.

Palavras-chave

Ratos Wistar; Compostos de Prata; Pericárdio; Vancomicina; Antibioticoprofilaxia

Abstract

Introduction: Surgical site infection (SSI) and polypropylene mesh (PPM) infections are recurrent problems in abdominal hernia surgeries, highlighting the need for a new antimicrobial material for surgical repair. The aim of this study was to evaluate the in vivo antimicrobial effect of a new biological mesh made of decellularized bovine pericardium (BP), added with vancomycin (VAN) or silver nanoparticles (AgNPs), as prevention for SSI.

Methods: Thirty-five Wistar rats were divided into four groups: BP C+ (n=9) with BP without additions; PP C+ (n=8) with PPM; BP AgNPs (n=9) with BP added with silver nanoparticles; and BP VAN (n=9) with BP added with vancomycin. The 1 cm² meshes were stitched into the muscle fascia under the subcutaneous tissue of the rats’ backs, followed by inoculation with methicillin-resistant Staphylococcus aureus. The animals were observed for 7 days, with subsequent euthanasia, and histological and bacteriological analysis.

Results: The BP VAN group had better infection control compared to the PP C+ and BP AgNPs groups (1x10¹ vs. 1.4x10³CFU/g, p=0.0303; 1x10¹ vs. 1.5x104CFU/g, p<0.0001, respectively). BP AgNPs showed less bacterial reduction compared to BP C+ (p=0.042). In the histological analysis, there was a mild inflammatory reaction in BP VAN, moderate in BP C+, and intense in PP C+ and BP AgNPs.

Conclusion: BP added with vancomycin showed promising antimicrobial action, while the use of silver nanoparticles did not demonstrate efficacy in this study.

Keywords

Rats, Wistar; Silver Compounds; Pericardium; Vancomycin; Antibiotic Prophylaxis

Referências

1 Choi JJ, Palaniappa NC, Dallas KB, Rudich TB, Colon MJ, Divino CM. Use of mesh during ventral hernia repair in clean-contaminated and contaminated cases. Ann Surg. 2012;255(1):176-80. doi: 10.1097/sla.0b013e31822518e6.

2 Brasil. Ministério da Saúde. Departamento de Informática do Sistema Único de Saúde-DATASUS-Sistema de Informações Hospitalares do SUS (SIH/SUS) [Internet]. 2024 [acesso 16 Dez 2024]. Available at: http://tabnet.datasus.gov.br/cgi/.

3 Birolini C, de Miranda JS, Utiyama EM, Rasslan S. A retrospective review and observations over a 16-year clinical experience on the surgical treatment of chronic mesh infection. What about replacing a synthetic mesh on the infected surgical field? Hernia. 2014;19(2):239-46. doi: 10.1007/s10029-014-1225-9.

4 Liu Z, Wei N, Tang R. Functionalized strategies and mechanisms of the emerging mesh for abdominal wall repair and regeneration. ACS Biomater Sci Amp Eng. 2021;7(6):2064-82. doi: 10.1021/acsbiomaterials.1c00118.

5 Gala Z, Lemdani MS, Crystal D, Ewing JN, Broach RB, Fischer JP, Kovach SJ. Abdominal wall reconstruction in ventral hernia repair: do current models predict surgical site risk? Hernia. 2025;29(1). doi: 10.1007/s10029-025-03350-7.

6 Carvalho RL, Campos CC, Franco LM, Rocha AD, Ercole FF. Incidence and risk factors for surgical site infection in general surgeries. Rev Lat Am Enferm. 2017;25:e2848. doi: 10.1590/1518-8345.1502.2848.

7 Köckerling F, Alam NN, Antoniou SA, Daniels IR, Famiglietti F, Fortelny RH, et al. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction? Hernia. 2018;22(2):249-69. doi: 10.1007/s10029-018-1735-y.

8 Cavallo JA, Gangopadhyay N, Dudas J, Roma AA, Jasielec MS, Baty J, et al. Remodeling characteristics and collagen distributions of biologic scaffold materials biopsied from postmastectomy breast reconstruction sites. Ann Plast Surg. 2015;75(1):74-83. doi: 10.1097/sap.0000000000000538.

9 Cornwell KG, Landsman A, James KS. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg. 2009;26(4):507-23. doi: 10.1016/j.cpm.2009.08.001.

10 Yahanda AT, Simon LE, Limbrick DD. Outcomes for various dural graft materials after posterior fossa decompression with duraplasty for Chiari malformation type I: a systematic review and meta-analysis. J Neurosurg. 2021;135(5):1356-69. doi: 10.3171/2020.9.jns202641.

11 Nedelcu M, Verhaeghe P, Skalli M, Champault G, Barrat C, Sebbag H, et al. Multicenter prospective randomized study comparing the technique of using a bovine pericardium biological prosthesis reinforcement in parietal herniorrhaphy (Tutomesh TUTOGEN) with simple parietal herniorrhaphy, in a potentially contaminated setting. Wound Repair Regen. 2016;24(2):427-33. doi: 10.1111/wrr.12386.

12 Kraft L, Ribeiro VS, de Nazareno Wollmann LC, Suss PH, Tuon FF. Determination of antibiotics and detergent residues in decellularized tissue-engineered heart valves using LC-MS/MS. Cell Tissue Bank. 2020;21(4):573-84. doi: 10.1007/s10561-020-09856-x.

13 Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, et al. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol. 2018;9. doi: 10.3389/fmicb.2018.01555.

14 Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. Nov 2013;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011.

15 Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and their Antibacterial Applications. Int J Mol Sci 2021;22(13):7202. doi: 10.3390/ijms22137202.

16 Schneeberger S, Phillips SE, Huang L, Pierce RA, Etemad SA, Poulose BK. Biologic and biosynthetic meshes in ventral hernia repair: when are they worth it? J Am Coll Surg. 2018;227(4):S139-S140. doi: 10.1016/j.jamcollsurg.2018.07.296.

17 Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020;4(1):e100115. doi: 10.1136/bmjos-2020-100115.

18 Collatusso DFF, Renato Bespalez, Dantas LR, Suss PH, Rocha JL, Casagrande TAC, et al. Biological membrane with antimicrobial activity with vancomycin and silver nanoparticles for guided bone regeneration - Development and clinical study. J Drug Del Sci Tech. 2024;96(2024):105729. doi: 10.1016/j.jddst.2024.105729.

19 Turner PV, Pang DS, Lofgren JL. A review of pain assessment methods in laboratory rodents. Comp Med. 2019;69(6):451-67. doi: 10.30802/aalas-cm-19-000042.

20 Vizzotto Junior A, Noronha L, Scheffel D, Campos A. Influência da cisplatina administrada no pré e no pós-operatório sobre a cicatrização de anastomoses colônicas em ratos, J Bras Patol e Med Lab. 2003;39(2):143-9.

21 Falagas ME, Makris GC. Mesh-Related infections after hernia repair. In: Schumpelick, V., Fitzgibbons, R.J. (eds). Hernia repair sequelae. Springer. 2010:97-102. doi: 10.1007/978-3-642-11541-7_13.

22 Buret A, Ward KH, Olson ME, Costerton JW. Anin vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res. 1991;25(7):865-74. doi: 10.1002/jbm.820250706.

23 Ballo MK, Rtimi S, Pulgarin C, Hopf N, Berthet A, Kiwi J, et al. In vitro and in vivo effectiveness of an innovative silver-copper nanoparticle coating of catheters to prevent methicillin-resistant staphylococcus aureus infection. Antimicrob Agents Chemother. 2016;60(9):5349-56. doi: 10.1128/aac.00959-16.

24 Shah BC, Tiwari MM, Goede MR, Eichler MJ, Hollins RR, McBride CL, et al. Not all biologics are equal! Hernia. 2010;15(2):165-71. doi: 10.1007/s10029-010-0768-7.

25 Shekhter AB, Fayzullin AL, Vukolova MN, Rudenko TG, Osipycheva VD, Litvitsky PF. Medical applications of collagen and collagen-based materials. Curr Med Chem. 2019;26(3):506-16. doi: 10.2174/0929867325666171205170339.

26 Wollmann L, Suss P, Mendonça J, Luzia C, Schittini A, Rosa GW, et al. Characterization of decellularized human pericardium for tissue engineering and regenerative medicine applications. Arq Bras Cardiol. 2019;113(1):11-17 doi: 10.5935/abc.20190094.

27 Kamarajah SK, Chapman SJ, Glasbey J, Morton D, Smart N, Pinkney T, et al. Systematic review of the stage of innovation of biological mesh for complex or contaminated abdominal wall closure. BJS Open. 2018;2(6):371-80. doi: 10.1002/bjs5.78.

28 Maatouk M, Ben Safta Y, Mabrouk A, Kbir GH, Ben Dhaou A, Sami daldoul, et al. Surgical site infection in mesh repair for ventral hernia in contaminated field: a systematic review and meta-analysis. Ann Med Surg. 2021;63:102173. doi: 10.1016/j.amsu.2021.02.019.

29 Morris MP, Mellia JA, Christopher AN, Basta MN, Patel V, Qiu K, et al. Ventral hernia repair with synthetic mesh in a contaminated field: a systematic review and meta-analysis. Hernia. 2021;25(4):1035-50. doi: 10.1007/s10029-020-02358-5.

30 Sun L, Chen J, Li J, Shen Y. Randomized and comparative clinical trial of bovine mesh versus polypropylene mesh in the repair of inguinal hernias. Surg Laparosc Endosc Amp Percutaneous Tech. 2020:30(1):26-9. doi: 10.1097/sle.0000000000000744.

31 Gurrado A, Franco IF, Lissidini G, Greco G, De Fazio M, Pasculli A, et al. Impact of pericardium bovine patch (Tutomesh(r)) on incisional hernia treatment in contaminated or potentially contaminated fields: retrospective comparative study. Hernia. 2014;19(2):259-66. doi: 10.1007/s10029-014-1228-6.
 

 

Submetido em:
08/10/2024

Aceito em:
25/07/2025

6973897ba9539502cc0b6df2 rcbc Articles

RCBC

Share this page
Page Sections